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Abstract 
In this project, a fully automatic approach to locate icosahedral virus particles in transmission electron 

microscopy images is proposed. For segmentation, we present random walker segmentation method to improve 

the efficiency and accuracy of the segmentation. Firstly, feature information has been employed to combine with 

the intensity information to measure weights between adjacent nodes (pixels). The parameters have been then 

adjusted for the two features above to obtain the scale. Secondly, Morphological features help to select the 

candidates, as the threshold is kept low enough to avoid false negatives. The candidate points are subject to a 

credibility test based on features extracted from eight radial intensity profiles in each point from a texture image. 

A candidate is accepted if these features meet the set of acceptance conditions describing the typical intensity 

profiles of these kinds of particles. When compared with the existing method our propose approach has good 

performance and high segmentation accuracy. 

KEYWORDS — ENTROPY, ICOSAHEDRAL VIRUS, SEGMENTATION, AUTOMATIC SELECTION, ELECTRON 

MICROSCOPY IMAGES. 

 

I. INTRODUCTION 
anual selection of single particles in images 

acquired using cryo-electron microscopy 

(cryoem) will become a significant 

bottleneck when datasets of a hundred thousand or 

even a million particles are required for structure 

determination at near atomic resolution.[1] algorithm 

development of fully automated particle selection is 

thus an important research objective in the cryoem 

field. A number of research groups are making 

promising new advances in this area. evaluation of 

algorithms using a standard set of cryoem images is 

an essential aspect of this algorithm development.  

 Three approaches remain relevant: the 

texture-based method, with an interactive training 

phase to select data windows representative of three 

categories particle, noise and junk — characterized 

by 8 features plus an estimate of the particle area.[12] 

These features enable a linear maximum likelihood 

discriminate analysis for further classification of 

other candidate data windows: a supervised 

classification in a 9-dimensional space of the 

candidates (located by convolution of the decimated 

image with a Gaussian of width related to the particle 

size and a peak search algorithm with specific 

constraints). The cross-point method developed for 

spherical virus particles, assumes that there is a 

constant relation between the intensity levels of the 

pixels inside a particle and the pixels in the 

background, and explores that relation. Post 

refinement is achieved by correlation with a model 

particle built as an average of all the particles 

detected. Icosahedral particles have also been 

detected by the local average intensity method , an 

automatic method that locates the initial point 

candidates comparing the average intensity value in a 

particle-sized circle with the average in a ring around 

that circle, and keeping the maxima of that ratio in 

each square of image with diagonal equivalent to the 

particle radius; in a second phase, these candidates 

are evaluated according a set of rules relating the 

intensities in 8 sectors of the circle and the 

corresponding sectors in the external ring, reduced to 

half of the initial thickness. A final pruning limits the 

possibility of duplicated selection of the same particle 

in two adjacent squares. In this work, we have 

developed a two-step multi-frame association finding 

algorithm which is based on a temporally semi-global 

formulation as well as combines a spatially global 

and a spatially local approach. Using this multiframe 

association finding algorithm we have developed a 

probabilistic tracking approach based on the Kalman 

filter. Compared to spatially global approaches, our 

association finding algorithm can better cope with 

spurious objects by selecting highly likely 

associations in the first step and using multi-frame 

optimization for the unmatched particles in the 

second step. Key properties of our approach are 
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multi-frame optimization, verification of associations 

with past and subsequent positions of the particles, 

correction of erroneous associations, and robust 

estimation of the position of particles. Compared to , 

our approach simultaneously exploits the information 

from several consecutive time points. Unlike, our 

approach performs particle linking and detection of 

clustering and unclustering simultaneously. We have 

quantitatively evaluated our approach using synthetic 

as well as real fluorescence microscopy image 

sequences displaying avian leucosis virus (ALV) 

particles and performed comparison with previous 

approaches. 

 

 
(a)                       (b)                           (c) 

Fig 1: Icosahedral virus particles (a) Capsid intact (b) 

damaged and (c) completely full of organic and stain 

materials. 

 

The first processing step for virus particles 

with icosahedral symmetry is the selection of virus 

particles from electron micrograph images. 

Traditionally, the selection of particles has been 

performed by hand.[9] In addition to being a slow 

monotonous process prone to human error, fatigue, 

and subjectivity, this method is also hindered by low 

image contrast which often makes particles very 

difficult to identify. This paper describes an 

automatic particle selection method which detects 

virus particles in extremely low contrast close to 

focus images. 

 Due to the spherical nature of virus particles 

we have chosen to use template matching [l, 2] for 

particle selection. While basic template matching is 

well suited to identifying circular projection images 

of virus particles, several issues must be addressed in 

order to provide an accurate and efficient particle 

selection method. These issues include the choice of 

a reference image, efficient image processing size, 

and compensation for the contrast gradients and 

spatial variation present in these images. We have 

modified the basic template matching algorithm to 

compensate for such image artefacts. 

 Most animal viruses are icosahedral or near-

spherical with icosahedral symmetry.Regular 

icosahedrons is the optimum way of forming a closed 

shell from identical sub-units. The minimum number 

of identical capsomers required is twelve, each 

composed of five identical sub-units. Many viruses, 

such as rotavirus, have more than twelve capsomers 

and appear spherical but they retain this symmetry. 

Capsomers at the apices are surrounded by five other 

capsomers and are called pentons. Capsomers on the 

triangular faces are surrounded by six others and are 

called hexons. Hexons are in essence flat and 

pentons, which form the 12 vertices, are curved. The 

same protein may act as the subunit of both the 

pentamers and hexamers or they may be composed of 

different proteins. 

 

II. RELATED WORK 
In electron cryo microscopy, projection 

images are used to determine the three dimensional 

structures of macromolecular complexes. [1]The first 

processing step for virus particles with icosahedral 

symmetry is the selection of virus particles from 

electron micrograph images. Traditionally, the 

selection of particles has been performed by hand. In 

addition to being a slow monotonous process prone 

to human error, fatigue, and subjectivity. Due to the 

spherical nature of virus particles we have chosen to 

use template matching [l, 2] for particle selection. 

While basic template matching is well suited to 

identifying circular projection images of virus 

particles, several issues must be addressed in order to 

provide an accurate and efficient particle selection 

method. These issues include the choice of a 

reference image, efficient image processing size, and 

compensation for the contrast gradients and spatial 

variation present in these images. First, the image is 

divided into small square sub images. Each sub 

image is then processed individually as follows. For 

spot-scan and other highly spatially varying images 

the optional black area correction and Fourier space 

filtering are performed as pre processing steps.[10] 

Next, the correlation image is calculated. If black 

area corrections are being performed the mask is 

applied to the correlation image to ensure accurate 

peak selection. The hand selected particle count was 

used as the true number of particles in the 

micrographs. These tests have shown that template 

matching is able to identify virus particles 

independent of the image defocus value . Particles 

can be detected on both flood beam and spot-scan 

images with the same accuracy. On average we have 

found that 85% of the particles are extracted from a 

given image.[3] The remaining 15% generally lie 

near spot-scan edges or ice contamination. The 

selected particles are very accurately centered. 

Unfortunately, this method is not sensitive. That is, a 

large amount of non-particle image areas are also 

selected. Our tests have shown that as many as 50% 

of the selected images are not particles. This is due to 

the inaccuracy of a template in very noisy images, as 

well as our peak by the template matching method. 

 Two fundamental concepts of computational 

geometry, namely, the distance transform and the 

Voronoi diagram, are used for detection of critical 

features as well as for accurate location of particles 

from the images or micrographs.[10] Our approach is 

fully automatic and has been successfully applied to 



Hizana M et al Int. Journal of Engineering Research and Applications                          www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.485-492 

 www.ijera.com                                                                                                                                 487 | P a g e  

detect particles with approximately circular or 

rectangular shapes (e.g., KLH particles). Particle 

detection can be enhanced by multiple sets of 

parameters used in edge detection and/or by 

anisotropic filtering. In contrast to X-ray diffraction 

technique, the single particle method does not require 

formation of crystals. However, the signal-to-noise 

ratio (SNR) in most cryo-EM images [2]is very low 

due to various reasons, such that high-resolution 

single particle analysis often has to rely on averaging 

of a large number of identical particles. Therefore, 

locating most, if not all, of the particles in the 

digitized cryo-EM images is a crucial step in high-

resolution single particle reconstruction. Another 

commonly used approach is based on template-

matching, where the template is chosen as a 

rotationally averaged image of manually picked 

particles.[8] The template is cross correlated with the 

entire image and the ‗‗peaks‘‘ of the resulting cross 

correlation map are identified as particles. This 

method, however, may fail for non-spherical particles 

or for multiple-view particles by the particle picking 

methods. 

 The micrograph is the non-Markovian field. 

The image segmentation step involves an estimation 

of coupling parameters and the maximum a posterior 

estimate of the realization of the Markovian field i.e., 

segmented image. The initial step in three-

dimensional structural studies of single particles and 

viruses after electron micrographs have been 

digitized is the selection (boxing) of particles images. 

Traditionally, this task has been accomplished by 

manual or semi-automatic procedures. The signal-to-

noise ratio (SNR), and in general the characterization 

of the noise in a micrograph, are very important to 

determine the best technique for automatic particle 

identification to be used for that micrograph.[4] 

Noise estimation could help the automatic selection 

of the parameters of an edge detection algorithm. 

Automatic selection of particle projections 

from a micrograph requires that the results be 

obtained reasonably fast. Hence, in addition to 

analysis pertinent to the quality of the solution, report 

the time required by the algorithm for different size 

and number of particles in a micrograph. The time 

devoted to different phases of our algorithm and 

demonstrates that pre-processing and segmentation 

account for 97–99% of the computing time. A 

significant portion of the time is spent in obtaining an 

optimization for the MRF. This can be overcome if a 

multi-scale technique is adopted . With a multi-scale 

technique, a series of images of smaller size, with 

larger pixel dimensions, are constructed. The 

optimization starts with the smallest size image, 

corresponding to the largest scale. The results are 

propagated to the optimization for the same image 

but of larger size, at next scale by the markov random 

field. 

 
Fig 2: Electron microscopic images of virus particles. 

 

 A number of research groups are making 

promising new advances in this area. Evaluation of 

algorithms using a standard set of cryoEM images is 

an essential aspect of this algorithm development. 

With this goal in mind, a particle selection 

‗‗bakeoff‘‘ was included in the program of the 

Multidisciplinary Workshop on Automatic Particle 

Selection for cryoEM. Due to the specific nature of 

the dataset, the major goal of the bakeoff focuses 

more on how to compare and contrast the results of 

different algorithms and less on the performance of 

individual algorithms.[5] As we know, even for 

experts, the final set of particles selected from the 

same set of images may vary from person to person. 

For this reason, we currently assess the results from 

different participants by comparing one result against 

another, measured by the false negative rate (FNR) 

and false positive rate (FPR) by the manual selection 

method. 

 Cell filopodia are segmented and virus 

particles are detected. Second, the segmentation 

result is used to discriminate surfing virus particles 

from other particles. Third, a probabilistic tracking 

approach based on independent particle filters is used 

for tracking surfing virus particles. Fourth, the 

direction and speed of the movement of surfing virus 

particles towards or away from a cell are determined. 

Our approach has been applied to synthetic as well as 

real microscopy image sequences. To quantitatively 

evaluate the performance, the following measures 

were calculated. [6] The number of correct 

trajectories (CT) (i.e., trajectories which start when 

particles attach to filopodia and finish when they 

invade cells, and which have no gaps), mostly correct 

trajectories (MT) (i.e., trajectories which start later 

than the time point of attachment to filopodia and/or 

finish before the time point of invasion, which have 

no gaps, and contain more than 50% of correctly 

tracked time steps), and mostly lost trajectories (ML) 

(i.e., trajectories as for MT, but which contain less 

than or equal to 50% of correctly tracked time steps), 

as well as the number of trajectory fragments (TF), 

and the number of false positives (FP) (trajectories of 

virus particles which do not move along cell by the 

virus surfing method. 

 The random walker algorithm is an 

algorithm for image segmentation. In the first 

description of the algorithm, a user interactively 
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labels a small number of pixels with known labels 

(called seeds), e.g., "object" and "background". The 

unlabeled pixels are each imagined to release a 

random walker, and the probability is computed that 

each pixel's random walker first arrives at a seed 

bearing each label, i.e., if a user places K seeds, each 

with a different label, then it is necessary to compute, 

for each pixel, the probability that a random walker 

leaving the pixel will first arrive at each seed. This 

computation may be determined analytically by 

solving a system of linear equations. After computing 

these probabilities for each pixel, the pixel is 

assigned to the label for which it is most likely to 

send a random walker. The image is modelled as 

a graph, in which each pixel corresponds to a node 

which is connected to neighbouring pixels by edges, 

and the edges are weighted to reflect the similarity 

between the pixels. Therefore, the random walk 

occurs on the weighted graph. 

The random walker algorithm was initially 

motivated by labelling a pixel as object/background 

based on the probability that a random walker 

dropped at the pixel would first reach an object 

(foreground) seed or a background 

seed. Consequently, the random walker algorithm has 

two different interpretations. 

𝑟𝑖𝑗 =
1

𝑤𝑖𝑗
 

In the first interpretation, each node associated 

with a background seed, is tied directly 

to ground while each node associated with an 

object/foreground seed,  is attached.[7] In the second 

interpretation, labelling a node as object or 

background by thresholding the random walker 

probability at 0.5 is equivalent to labelling a node as 

object or background based on the relative effective 

conductance between the node and the object or 

background seeds . 

Step 1: Learn the constraint-free optimal projection 

of the training data, X, e.g. using graph embedding 

(GE) 

Wy=λDy 

where  y is the projection of  X  in the subspace 

defined by  W.  Wij models the intrinsic relationships 

between samples  i and j of the training data, and  D 

is a diagonal matrix with Dii = ∑j Wij. The advantage 

of GE is that it enables various subspace learning 

algorithms to be used as classifiers by simply varying  

W. 

Step 2: Determine the classifier weights  a  such that 

y and Xa are as similar as possible under the desired 

constraints: 

𝑎 = min
𝑎

 𝑦 + 𝑋𝑎 2 + Γ 2
 

If we then transform by augmenting X  and  y  as 

follows: 

𝑋 = (1 + 𝛼)−
1

 2
     

𝑋

 ∝ Γ
 , 𝑦 =  

𝑦

0
  

The Application for the random walker segmentation 

is the Medical Image Segmentation, Image 

Colorization, Mesh Segmentation and Shadow 

Elimination. 

 

III. SYSTEM  MODEL 

 

A. PRE-PROCESSING 

The Pre-Processing is the basic step which is used 

for the image acquisition method. The pre-processing 

method includes several methods such as 

morphology compensation, Wavelet filter, Wiener 

filter and the Histogram Equalization. 

 

i. Morphology Compensation 

      The Morphology compensation is used to 

compensate the irregular background of the image. 

Morphological Closing after Opening is done in the 

Morphology Compensation of the image. It is used in 

the image enhancement and Noise removal. In the 

sample image, the background illumination is 

brighter in the center of the image than at the bottom. 

In this step, the example uses a morphological 

opening operation to estimate the background 

illumination. Morphological opening is an erosion 

followed by a dilation, using the same structuring 

element for both operations. The opening operation 

has the effect of removing objects that cannot 

completely contain the structuring element. For more 

information about morphological image processing, 

see Morphological Filtering.The example calls the 

imopen function to perform the morphological 

opening operation. Note how the example calls the 

strel function to create a disk-shaped structuring 

element with a radius of 15. To remove the rice 

grains from the image, the structuring element must 

be sized so that it cannot fit entirely inside a single 

grain of rice. 

 
Fig 3: Image with Uniform Background using the 

Morphology Compensation. 

 

 The disk level structuring element is 

compensated by the top hat morphological method. 

The top hat meaning is the Erosion and Dilation of 

the small object. 

 

ii. Wavelet Filter 

Morphology Image
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      The Wavelet filter is done by the Daubechies 

filter. The Wavelet is the wave- like amplitude which 

is increases and decreases back to zero. It is used for 

converting the spatial domain to the sub-band 

domain. It extract the wavelet co-efficient and then 

apply the quantization. The quantization is a lossy 

Compression technique achieved by compressing a 

range of value to a single quantum value. For 

example, reducing the number of colours required to 

represent a digital image makes it possible to makes 

it possible to reduce file size. The unknown region is 

removed. The wavelet spike filter is used to filter the 

high value coefficients. 

𝑥 𝑡 =   𝑥, ℵ𝑚, 𝑛  ℵ𝑚, 𝑛(𝑡)

𝑛𝜖𝑍𝑚∈𝑍

 

The frequency bands or subspaces (sub-bands) are 

scaled versions of a subspace at scale 1. This 

subspace in turn is in most situations generated by the 

shifts of one generating function ψ in L
2
(R), the 

mother wavelet. For the example of the scale one 

frequency band [1, 2] this function is used. Wavelet 

transforms can be used to transform data, then encode 

the transformed data, resulting in effective 

compression. The image enhancement and the 

restoration can be done by the wavelet filter. The 

filtering can be done by the different methods for the 

better performance and the high level values at the 

higher intensities. The frequency and the band width 

of the images can be found at the zero values which 

increases and decreases. 

       Wavelet theory is applicable to several subjects. 

All wavelet transforms may be considered forms 

of time-frequency representation for continuous-

time (analog) signals and so are related to harmonic. 

Almost all practically useful discrete wavelet 

transforms use discrete-time filter banks. These filter 

banks are called the wavelet and scaling coefficients 

in wavelets nomenclature. These filter banks may 

contain either finite impulse response (FIR) 

or infinite impulse response (IIR) filters. The 

wavelets forming a continuous wavelet 

transform (CWT) are subject to the uncertainty 

principle of Fourier analysis respective sampling 

theory: Given a signal with some event in it, one 

cannot assign simultaneously an exact time and 

frequency response scale to that event. The product 

of the uncertainties of time and frequency response 

scale has a lower bound. Thus, in the scale gram of a 

continuous wavelet transform of this signal, such an 

event marks an entire region in the time-scale plane, 

instead of just one point. Also, discrete wavelet bases 

may be considered in the context of other forms of 

the uncertainty principle. Wavelet transforms are 

broadly divided into three classes: continuous, 

discrete and multi-resolution-based. 

  

 
 

Fig. 4. Diagram for the implementation of the 

system model. 

 

iii. Wiener Filter 

      The Wiener filter problem has solutions for three 

possible cases: one where a non-causal filter is 

acceptable (requiring an infinite amount of both past 

and future data), the case where a causal filter is 

desired (using an infinite amount of past data), and 

the finite impulse response (FIR) case where a finite 

amount of past data is used. The first case is simple 

to solve but is not suited for real-time applications. 

The Wiener Filter is the combination of the inversion 

filter and the smoothening filter. The Inverse Filter is 

used to remove the blur from the images and the 

smoothening filter is used to remove the noise from 

the images. Inverse filter restores a blurred image 

perfectly from an output of a noiseless linear system. 

However, in the presence of additive white noise, it 

does not work well. In this project, how the ratio of 

spectrum N/H affects on the image restoration is 

demonstrated.  

𝐺 =
𝐻 𝜔1,𝜔2 𝑆𝑢𝑢 (𝜔1, 𝜔2)

 𝐻(𝜔1, 𝜔2) 2 + 𝑆𝑢𝑢  𝜔1, 𝜔2 + 𝑆𝜂𝜂 (𝜔1, 𝜔2)
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It is commonly used to denoise audio signals, 

especially speech, as a preprocessor before speech 

recognition. 

iv. Histogram Equalization 

     Histogram equalization is a technique for 

adjusting image intensities to enhance contrast. Let f 

be a given image represented as a mr by mc matrix of 

integer pixel intensities ranging from 0 to L − 1. L is 

the number of possible intensity values, often 256. 

Let p denote the normalized histogram of f with a bin 

for each possible intensity. So 

pn =
number of pixels with intensities n

number of pixels
 

The histogram equalized image g will be defined by 

gi,j = floor((L − 1) pn)

fi ,j

n=0

 

where floor() rounds down to the nearest integer. 

This is equivalent to transforming the pixel 

intensities, k, of f by the function. This method 

usually increases the global contrast of many images, 

especially when the usable data of the image is 

represented by close contrast values. Through this 

adjustment, the intensities can be better distributed on 

the histogram. This allows for areas of lower local 

contrast to gain a higher contrast. Histogram 

equalization accomplishes this by effectively 

spreading out the most frequent intensity values.The 

method is useful in images with backgrounds and 

foregrounds that are both bright or both dark. In 

particular, the method can lead to better views of 

bone structure in x-ray images, and to better detail in 

photographs that are over or under-exposed.  

 

B.RANDOM WALKER SEGMENTATION 

  The random walker algorithm is an algorithm 

for image segmentation. In the first description of the 

algorithm, a user interactively labels a small number 

of pixels with known labels (called seeds), e.g., 

"object" and "background". The unlabeled pixels are 

each imagined to release a random walker, and the 

probability is computed that each pixel's random 

walker first arrives at a seed bearing each label, i.e., 

if a user places K seeds, each with a different label, 

then it is necessary to compute, for each pixel, the 

probability that a random walker leaving the pixel 

will first arrive at each seed. This computation may 

be determined analytically by solving a system of 

linear equations. After computing these probabilities 

for each pixel, the pixel is assigned to the label for 

which it is most likely to send a random walker. The 

image is modelled as a graph, in which each pixel 

corresponds to a node which is connected to 

neighbouring pixels by edges, and the edges are 

weighted to reflect the similarity between the pixels. 

Therefore, the random walk occurs on the weighted 

graph. 

The random walker algorithm was initially 

motivated by labelling a pixel as object/background 

based on the probability that a random walker 

dropped at the pixel would first reach an object 

(foreground) seed or a background 

seed. Consequently, the random walker algorithm has 

two different interpretations. 

𝑟𝑖𝑗 =
1

𝑤𝑖𝑗
 

In the first interpretation, each node associated 

with a background seed, is tied directly 

to ground while each node associated with an 

object/foreground seed,  is attached. In the second 

interpretation, labelling a node as object or 

background by thresholding the random walker 

probability at 0.5 is equivalent to labelling a node as 

object or background based on the relative effective 

conductance between the node and the object or 

background seeds . 

 

Adaptive sparse classifier: 

 

Step 1: Learn the constraint-free optimal projection 

of the training data, X, e.g. using graph embedding 

(GE) 

Wy=λDy 

where  y is the projection of  X  in the subspace 

defined by  W.  Wij models the intrinsic relationships 

between samples  i and j of the training data, and  D 

is a diagonal matrix with Dii = ∑j Wij. The advantage 

of GE is that it enables various subspace learning 

algorithms to be used as classifiers by simply varying  

W. 

 

Step 2: Determine the classifier weights  a  such that 

y and Xa are as similar as possible under the desired 

constraints: 

𝑎 = min
𝑎

 𝑦 + 𝑋𝑎 2 + Γ 2
 

If we then transform by augmenting X  and  y  as 

follows: 

𝑋 = (1 + 𝛼)−
1

 2
     

𝑋

 ∝ Γ
 , 𝑦 =  

𝑦

0
  

The Application for the random walker segmentation 

is the Medical Image Segmentation, Image 

Colorization, Mesh Segmentation and Shadow 

Elimination. 

 

C. FEATURE DESCRIPTORS 

   The feature Descriptors consist of the textured 

based features and the region based features and 

properties. The textured descriptors and the region 

properties can be calculated by the different formulas 

such as area, circumferences, ellipicity etc. 

 

i.Textured Features 

    Image is divided into multiple blocks and the each 

block is computed by means of standard deviation 
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formulas. The computed block is then obtained as 

textured images. 

σ2 =
1

N − 1
 (xi − μ)2

N−1

i=0

 

The standard deviation of the textured image is found 

by the above formula. N is the number of the blocks 

in the images. 

ii. Region Properties 

       Textured segmented image region properties like 

area, circumference and ellipicity are calculated. The 

area and the circumference are calculated from the 

region properties. i.e., when the area is less than 100 

pixels, the candidate will select the region by the 

region property. 

 

D.CANDIDATE SELECTION  

      The original images with a magnification of 

52.000 were digitized at 16 bits and 800 dpi, i.e. 

about 3900×2800 pixels. The intensive computing of 

this approach required a re-sampling at 1:3 rate, to 

reduce the images to an affordable processing time 

during development. Pre-processing with a wavelet 

filter, consisting in decomposition (using a 

Daubechies wavelet of support of order 11) followed 

by reconstruction with the details of first level 

suppressed, provided a smooth filter of local spikes.  

The pre-processed image constitutes the input to the 

entropy proportion calculation. 

𝑙𝑒𝑝   𝑖, 𝑗 =
𝑛(𝑖, 𝑗)

𝑑(𝑖, 𝑗)
 

 The value of the entropy e was computed as the sum 

𝑒 = −  ℎ𝑙𝑜𝑔2 (ℎ)  

This evaluation was achieved in a texture image built 

with a standard deviation filter using a 3D structuring 

element on a pre-processed input image. 

 

E .PERFORMANCE ANALYSIS 

        The performance analysis was obtained by the 

ROC(Receiver Operating Characteristics). The ROC 

can be calculated from the False Positive Rate and 

the False Negative Rate.  

         The False Positive Rate (computed as the ratio 

of erroneous particles of all classes to the total 

number of particles identified) were below 0.5 ROC. 

i.e., the percentage of  the FPR is 10%  

         The True Positive Rate is the ratio between the 

numbers of the missed particles to the total number of 

the particles identified in the class. The percentage 

will be 63% 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

where, 

          TPR, FPR= True Positive Rate, False Positive 

Rate 

          TP, FP= True Positive, False Positive 

          TN, FN= True Negative, True Negative 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 

 
 

IV.  CONCLUSION AND EXPERIMENTAL 

RESULTS 
         The experimental results of the virus particle 

detection can be performed by many of the method. 

The Experimental results can be found by the 

performance by class and particles. When the 100% 

intact particle is detected, 76% will be permeated and 

60% will be damaged. The True Positive Rate of the 

virus Particles can be obtained by the 60% and the 

0.8 of the permeated particles. Since there are many 

disadvantages in detection of virus automatically, 

Automatic Virus particle selection was preferred for 

the identification of the virus more easily and clearly. 

The initial detection of the particles takes place by 

automatic segmentation of the entropy-proportion 

image. The basics for the entropy approach remains 

valid as long as an area of low entropy can be 

associated with the object of interest. The detection 

of the minima in the entropy proportion image can be 

achieved by many methods, like a peak search 

algorithm applied to the complement of the image or 

any other current method; the use of a threshold 

dependency of the image characteristics aims to 

simplify this step of the process, and enables the 

subsequent selection by morphological characteristics 

of the objects retained.  
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